\qquad
\qquad Period: \qquad

WORKSHEET: FIINCTION COMBINATIONS \& INVERSES (SECTIONS 8.1-8.2)

For problems \#1-2, use the functions f and g to find each combination. Show all work.

1. $f(x)=x+1 \quad g(x)=\sqrt{x}$
a. $(f+g)(4)$
b. $(f / g)(9)$
c. $(f \circ g)(9)$
c. $(f \circ g)(x)$
d. $(g \circ f)(9)$
d. $(g \circ f)(x)$

For problems \#3-4, find the domain of each function, and then also the domain of the given combination. State domains as discussed, for example $\{x: x>3\}$ or $\{x: x \neq-2\}$ or $\{x: x$ is a real \#\}. Be careful to remember that there are only two basic ways to 'break a function machine'.
3. $f(x)=x+3$
$g(x)=x-4$
(f/g)(x)
4. $f(x)=\sqrt{x}$
$g(x)=x-2$
$(f \circ g)(x)$
5. A store is having a clearance sale, where a certain shirt is marked down by $\$ 10$, and then another 25% is taken off the final price. The two functions that represent these discounts from a price x are as follows: $f(x)=x-10$ and $g(x)=0.25 x$
Which one of the following is the correct combination of the functions f and g that represents the clearance price of an item during this sale? (Circle one answer.)
a. $(f+g)(x)$
b. $(\mathrm{fg})(\mathrm{x})$
c. $(f \circ g)(x)$
d. $(g \circ f)(x)$

For problems \#6-7, verify algebraically that f and g are inverse functions of each other. Show all work.
6. $f(x)=2 x-1$
$g(x)=\frac{1}{2}(x+1)$
7. $f(x)=3-x$
$g(x)=3-x$

For problems \#8-9, find the inverse function. Show all work.
8. $f(x)=6 x+1$
9. $f(x)=\frac{3 x}{x-5}$
10. Does the given graph show a function? Explain your answer.

Does the given graph have an inverse? Explain your answer.

11. Use the given graph of f to sketch the graph of f^{1}.

